| Question
 Number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 (a) (i)}$ | 1. an increase in temperature increases the permeability / eq
 ; idea that increase in permeability is non-linear e.g.
 greatest increase between 40 and $60^{\circ} \mathrm{C}$, less change up to
 $40^{\circ} \mathrm{C}$; | 2. NOT faster, slower, etc |
| 3. credit correct manipulation of figures e.g. 4.9 increase | | |
| between 40 and $60^{\circ} \mathrm{C}$; | | |

Question Number	Answer	Additional guidance	Mark
1(a)(ii)	1. idea that increased kinetic energy increases movement of molecules ; 2. reference to phospholipids moving / eq ; 3. idea that (membrane) proteins denatured ; 4. idea that there is more \{denaturation / disruption / eq\} at \{higher temperatures / above $40{ }^{\circ} \mathrm{C}$ \} ; 5. idea that \{betalain / pigment\} can escape from the \{cell / vacuole /eq \} when the membrane is disrupted; 6. comment on the disruption of the vacuole membrane / eq ;		

Question Number	Answer	Additional guidance	Mark
* 1(b)	(QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. appropriate standardisation of source of beetroot tissue ; 2. standardisation of size of beetroot pieces / eq ; 3. need for $\{$ washing / rinsing / eq\} \{beetroot / eq\} (thoroughly) ; 4. use of waterbath (to maintain / change temperature) ; 5. reference to repeats at each temperature / replicates / eq ; 6. se of temperatures \{below 20 / above $90^{\circ} \mathrm{C} /$ smaller intervals / eq \}; 7. reference to one other suitable variable e.g. time beetroot pieces left between cutting and use ; 8. reference to \{calibration / zeroing / eq\} of colorimeter ;	QWC emphasis clarity of expression	

Question Number	Answer	Additional Guidance	Mark
2(a)	1. proteins consist of amino acids joined together by peptide bonds;	2. credit reference to named bonds (between R groups) involved in holding \{3D structure / eq\};	
3. carbohydrates consist of \{monsaccharides / glucoses / eq\}; 4. reference to glycosidic \{bonds / eq\} between (adjacent) \{glucose / eq\} molecules;			

Question Number	Answer	Additional Guidance	Mark
2(b)	1. idea that the drugs could \{bind to / alter shape of\} \{glycoproteins / gp120\} ;		
2. idea that drugs bind to \{receptors / antigens\} on membrane / eq ;	3. called CD4 (antigen / molecules) ; 4. preventing virus attaching to T (helper / CD4 +) cells / eq ;	(3) XP	

Question Number	Answer	Additional Guidance	Mark
*2(c)	1. reference to reverse transcriptase ; 2. idea of formation of (viral) DNA ; 3. from (viral) RNA ; 4. reference to integrase ; 5. idea of integration of (viral) DNA into (host) DNA ; 6. idea that $\{T$ helper cells / eq\} would be \{destroyed / killed / burst / eq\} (by virus particles leaving cell) ; 7. idea that more T (helper) cells would become infected	QWC focussing on clarity of expression 2. reject idea that RNA is \{turned into / converted into\} DNA 5. ACCEPT idea of \{latency / formation of provirus / eq\}	

Question Number	Answer	Additional Guidance	Mark
3(a)	1. \{phosphate group / heads\} are hydrophilic ; 2. Idea that heads can be attracted to water ; 3. \{fatty acids / tails\} are hydrophobic ; 4. Idea that tails orientate themselves away from water / eq ; 5. Idea of aqueous environment on both sides of the membrane ;	ACCEPT marks for annotated diagram, phonetic spelling OK IGNORE "water loving / hating" 1. CCEPT polar 2. t just facing water 3. CCEPT non polar 4. CCEPT repel water, face away from water, away from polar environment 5. CCEPT polar environment	(3)

Question Number	Answer	Mark
3(b)	B ;	
	C ;	
	A (3)	

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 (c) (i)}$ | 1. both have a phospholipid bilayer and protein / eq ;
 2. idea that the fluid mosaic model has \{proteins within
 the phospholipid layer / protein channels \} while the | 1. CCEPT point pieced together in response |
| Davison - Danielli model has protein layer on the
 outside of the membrane only ;
 the proteins in the two models, but can be expressed in a | number of ways. | |
| 3. reference to other components present in fluid mosaic
 model e.g. glycolipid, glycoprotein, cholesterol ; | (2) | |

Question Number	Answer	Additional Guidance	Mark
3(c)(ii)	1. idea that molecules would not be able to diffuse through the (two) protein layers / eq ; 2. idea of no \{channels / carriers / protein \} for \{facilitated diffusion / active transport / osmosis\}; 3. comment on fluidity of membrane / limits fusion of vesicles /eq :	1. CCEPT osmosis in context of water passing through protein layer 2. CCEPT pumps for active transport 3. CCEPT endo/exocytosis	(2)

Question Number	Answer	Additional Guidance	Mark
4(a)	1. reference to phospholipid bilayer ; 2. correct orientation and structure of the phospholipids in the bilayer ; 3. explanation of why the phospholipids are orientated the way they are e.g. heads attracted to water OR tails repelled by water ; 4. proteins in the membrane (described / shown) ; 5. idea of two different locations of proteins e.g. extrinsic, intrinsic, transmembrane ; 6. glycoproteins / glycolipids (described / shown) ; 7. idea of cholesterol within the membrane (described / shown) ;	Read what is written on the lines first Accept points made on a clearly labelled diagram If diagram and description contradict then Mp not awarded 2. CCEPT heads on outside and each with two tails if drawn 2. N if gap between phospholipids is too large e.g. as large as a phopholipid in the diagram 3. CCEPT ref to heads being hydrophilic OR tails hydrophobic OR explained in terms of polarity 5. If only one protein located then still get Mp4	(5) p

Question Number	Answer	Additional Guidance	Mark
4(b)	1. small ; 2. non-polar / non-charged ; 3. lipid soluble / eq ; 4. idea that they are recognised by (specific) protein receptors /eq ;	1. NOT ‘size' alone 2. ACCEPT ref. to polar if correctly qualified 3. ACCEPT solubility in lipids NOT just 'solubility' NOT 'water soluble' ACCEPT 'fat soluble'	(2) Grad

Question Number	Answer	Additional Guidance	
4(c)	Similarity any one from: 1. use \{ca ier / channel\} proteins OR 2. transport \{hydrophilic / eq\} molecules / named molecule; Difference any one from: 3. dea that active transport requires \{energy / ATP\} / facilitated diffusion does not require \{energy / ATP\} OR 4. ac ve transport moves molecules against a concentration gradient / facilitated diffusion allows molecules to move down a concentration gradient / eq ;	1. IGNOIGNORE transport protein CCEPT charged / polar 2.	
(2)			

Question Number	Answer	Additional guidance	Mark
5(a)	1. phospholipid (bilayer) ; 2. credit details of phospholipid bilayer ; 3. proteins; 4. credit details of proteins ; 5. reference to other named membrane components ;	ALLOW a clearly labelled diagram 2. e. orientation because of hydrophobic and/or hydrophilic regions eg phospholipids are fluid 4. e.g. scription of channel/carrier protein structure or position. (Intrinsic, extrinsic or transmembrane) 5.e.g. glycolipid, cholesterol, glycoprotein, carbohydrate chain, glycocalyx	(3)

Question Number	Answer	Additional guidance	Mark
5(b)(i)	Solute P: 1. (up to 30 minutes) the \{concentration / number\} of molecules of P increases inside the cell / eq ; 2. ref to \{diffusion / facilitated diffusion\}(of molecules of P into the cell) ; 3. down the concentration gradient (of P) / eq ; 4. \{between 30 and 40 minutes / after 30 minutes $\}$ the \{concentration / number\} of molecules (of P) inside the cell stays the same / eq ; 5. concentration (of P) inside cell equals concentration outside cell / reaches equilibrium / eq ; Solute R: 6. solute R does not enter cell / eq ; 7. membrane is impermeable to R;	IGNORE amount max 4 marks for solute P 2. N osmosis 3. ALLO high to low concentration NOT high to low concentration gradient 4. ALLO no net movement	

Question Number	Answer	Additional guidance	Mark
$\mathbf{5 (b) (i i)}$	six white circles inside and outside the cell and 4 black circles outside cell ;		(1)

